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Shape Perception of Thin Transparent Objects
with Stereoscopic Viewing
JIANHUI CHEN and ROBERT S. ALLISON, York University

Many materials, including water surfaces, jewels, and glassware exhibit transparent refractions. The human visual system
can somehow recover 3D shape from refracted images. While previous research has elucidated various visual cues that can
facilitate visual perception of transparent objects, most of them focused on monocular material perception. The question of
shape perception of transparent objects is much more complex and few studies have been undertaken, particular in terms of
binocular vision.

In this article, we first design a system for stereoscopic surface orientation estimation with photo-realistic stimuli. It displays
pre-rendered stereoscopic images and a real-time S3D (Stereoscopic 3D) shape probe simultaneously. Then we estimate people’s
perception of the shape of thin transparent objects using a gauge figure task. Our results suggest that people can consistently
perceive the surface orientation of thin transparent objects, and stereoscopic viewing improves the precision of estimates. To
explain the results, we present an edge-aware orientation map based on image gradients and structure tensors to illustrate the
orientation information in images. We also decomposed the normal direction of the surface into azimuth angle and slant angle
to explain why additional depth information can improve the accuracy of perceived normal direction.
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1. INTRODUCTION AND PREVIOUS WORK

Perceiving the orientation of visible surfaces in the environment is thought to be a key step in spatial
vision, object recognition and visually guided action [Barrow and Tenenbaum 1981; Marr 1982]. Since
light passes through transparent objects, one not only sees the surfaces of the transparent object, but
also the scene behind the object. With these complex images, how can the brain obtain the shape of an
object? For opaque surfaces an important cue to surface orientation is binocular disparity. The stereo-
scopic views provide additional information about binocular depth based on the disparities between the
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images in the left and right eyes. Surface orientation is encoded by gradients of disparity and surface
curvature by higher-order disparity transforms. Even with stereoscopic depth, the multiple layers of
transparent objects pose a formidable problem for vision. How does the visual system solve a problem
that seems computationally intractable? We attempt to address this by studying transparent surface
perception.

Early researchers [Gibson 1950] argued for a direct correspondence between perception and some
measurable property of the optical stimulation. However, the mapping from the world into the image
is many-to-one, and hence there is no unique solution to the problem; however it is often true that
3D interpretations of given image are highly constrained. One possibility is that human visual system
exploits regularities of the natural environment to select an interpretation that is statistically most
likely. For instance, the light source position is assumed to be in front of and above the object [Sun
and Perona 1998], the world is stable and the pattern of optic flow indicates structure and self motion
[Gibson 1950], and the pattern of texture on a physical surface has some form of underlying regularity
[Todd et al. 2004].

When light from a scene is reflected by highly reflective objects and then reaches people’s eyes, people
perceive the luminance/colors as arising from the scene instead of as surface markings on the mirrored
object. A similar situation happens when light is refracted by transparent objects and reaches peo-
ple’s eyes. In both cases, the image depends on the pattern of the light in the environment as well as
the shape of the surface. Thus, study of the influence of the environment map is very important for
the understanding of shape perception of reflective/refractive objects. Fleming et al. [2003] studied the
statistics of real world illumination that facilitates the perception of a reflective surface. They designed
a surface reflectance matching task to measure the accuracy of human surface reflectance estimation.
They demonstrated that subjects could match surface reflectance properties reliably and accurately in
the absence of context, as long as the illumination was realistic. Their work also suggested that sub-
jects use stored assumptions about the statistics of real-world illumination when estimating surface
reflectance. Illumination maps derived from very different scenes in the world share certain statistical
regularities in structure. The authors argued that these regularities allow the visual system to make
certain assumption in interpreting images of surfaces. This analysis and the supporting experiments
indicated that real-world illumination is necessary for the study of perception of reflective objects.

Due to the similarity between mirror reflectivity and transparent refraction, the most relevant work
to ours involves shape perception of reflective objects [Fleming et al. 2004]. Fleming et al. argued that,
specular reflections can provide reliable and accurate constraints on 3D shape based on an experiment
that had subjects match a gauge figure to the perceived surface normals of reflective objects with
photo-realistic rendering. Subjects were generally good at estimating the shapes of perfectly mirrored
surfaces, even though the stimuli were presented without any context to specify the scene surrounding
the object. They concluded that the visual system can use the “orientation fields” across the image to
recover 3D shape. Although they obtained the perceptual error of tilt and slant angles, they do not
analyze the error quantitatively.

However, there are two obvious differences between the specular and transparent cases. First,
if we use the tangential plane of the local surface as a reference plane, the directions of the re-
flected/refracted ray are on the opposite side. Second, the refractive angle depends on the IOR (index of
refraction) of the material as well as the incident angle, while the reflective angle only depends on the
incident angle. These differences make the perception of the shape of transparent objects much more
difficult than the mirror reflective objects, even for the case of a single refraction/reflection. Moreover,
there are potential ambiguities between reflection and refraction when we mask the environment. In
other words, subjects may not be able to discern which object is reflective and which is refractive given
two images such as in Figure 1. This is because of the similarity of light paths between reflective
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(a) (b)

Fig. 1. A reflective object and refractive object rendered in an indoor scene. The scene was masked so that object appears in
isolation.

objects and refractive objects. From the perspective of geometry of light, refraction can flip the envi-
ronment map left to right and upside down, while reflection maintains the relative order of left/right
and up/down. So people are able to “fake” a refractive image of a reflective object, and vice versa, by
modifying the environment map. Visibility of the scene helps to resolve the visual ambiguity between
reflection and refraction.

Since the light passes multiple surfaces through transparent objects, the visual system must recover
the properties of two or more surfaces simultaneously to see veridically. Kersten et al. [2006] presented
an experiment using stereoscopic volume rendering of purely absorptive media to study enhancement
of depth perception with stereoscopic viewing. The subjects were required to determine the direction
of rotation of a cylindrically orientated volume. The results strongly suggested that relative depth can
be perceived using stereoscopic viewing. Although their research considered only purely absorptive
media (i.e. no refraction), it demonstrated the advantages of stereoscopic viewing in shape perception
of transparent objects.

Fleming et al. [2011] highlighted the utility of the distortion field produced by thick transparent
objects to the perception of the material properties of transparent objects. They used matching exper-
iments to study the influence of IOR, distance to the rear wall, and thickness on material perception.
They concluded that the distortion field is a midlevel cue that involves comparing the relative scale of
texture elements seen through the transparent object with the elements seen directly.

This study focuses on the problem of extracting surface orientation from visual information, espe-
cially from stereoscopic views. This article makes the following contributions.

(1) We present a photo-realistic image-generation system for experiments on surface orientation esti-
mation. It combines stereo image display and real-time rendering of a stereoscopic 3D shape probe.

(2) We demonstrate that people can consistently perceive the shape of thin transparent objects, and
that stereoscopic viewing can improve accuracy.

(3) We present an edge-aware orientation map to illustrate the orientation information specifying
shape in images, and analyze the geometrical relationship between local dominant orientation and
surface normal direction.

2. STEREOSCOPIC SHAPE ESTIMATION SYSTEM

The system displayed an S3D gauge that subjects could adjust to indicate the surface normal direction
at specified locations in photo-realistic images.
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Fig. 2. Apparatus and experimental setup with subject. The subject viewed the image through shutter glasses and adjusted
an overlaid gauge figure to match the surface normal direction by moving the mouse. The experiment was conducted in a dark
room to control extraneous features and stray light.

2.1 Hardware

The system was implemented and tested on a desktop PC (Intel duo core 2.4GHz, 2GB memory and
Nvidia GeForce GT 240). Figure 2 shows the experimental setup. The display was a 23.6 inch LCD
monitor (Acer GD235HZ) with ability to present 1920 × 1080 resolution images at 120 Hz. For stereo-
scopic viewing, we used the Nvidia 3D vision kit. It consisted of an IR (infrared) emitter and wireless
glasses. The wireless glasses consisted of a pair of liquid crystal shutters that can block vision selec-
tively in the left or right eye to synchronize with the presentation of the left and right image in the
display. These images were alternated at 120 Hz to provide independent 60 Hz video to each eye.

2.2 Software

2.2.1 Object Modeling and Stimulus Rendering. We modeled hatlike randomly shaped thin objects
based on an algorithm developed by Norman and Todd [1996]. Figure 3 shows four objects used in
the experiment. We used randomly generated objects since the observers could use prior knowledge to
judge the surface shape of familiar objects. From this perspective, these objects have been widely used
in shape discrimination [Lee and Saunders 2011] and shape perception [Fleming et al. 2004].

There are a number of reasons for choosing thin objects. First, thin objects represent many important
refractive phenomena in the natural world such as water surfaces and thin lenses. Second, in the thick
objects, most of the light is refracted more than once and the environment is severely distorted so that
subjects may totally lose the visual shape cues. On the other hand, thin objects simplify the light path
and make shape judgement possible.

The stimuli were rendered by a ray tracing engine in Blender [Flavell 2010]. The material of the
object was perfectly transparent without diffuse and mirror specular properties. The IOR was set to 1.4.
We adopted a light probe [Debevec 1998] to simulate the environment. It was a 1500×1500 HDR (high
dynamic range) image with dynamic range of 200000:1. It allowed us to render perfectly transparent
surfaces that yield highly realistic images. The ray tracing depth was set to 4 so that the light will be
refracted at most 4 times. Since the object has a planar back surface, most of the light was refracted
only once. The over sampling number was set to 16 to minimize the rendering artifacts. The images
were tone mapped for the stereoscopic display.

We used a stereoscopic camera model [Schneider 2012] to generate the left and right eye views.
We set the camera separation to 0.1 Blender units and zero-parallax at 6 Blender units from the
ACM Transactions on Applied Perception, Vol. 10, No. 3, Article 15, Publication date: August 2013.
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Fig. 3. The four objects used in the experiment (here with red-cyan anaglyphs). In the third row, the objects were rendered as
Lambertian to illustrate their shapes.

viewpoint. The max parallax angle was set to 1◦. The distance between viewer and display screen was
set to 50.8 cm and PPI (Pixel Per Inch) was set to 96. The transparent object was placed behind the
zero-parallax plane so that it was located behind the screen plane in the experiment. These settings
located the objects inside of the comfortable zone to eliminate stereoscopic discomfort and artifacts.

Besides the stereo images, we also stored the focal length fc, camera sensor width sw, and two ad-
ditional images to recover the 3D position and normal vector for each pixel. The first image was a
depth map that stored the depth value for each pixel. The second image was a normal map that stored
the normal vector for each pixel. Both the depth value and normal value were specified in camera
coordinates.

2.2.2 Stereo Image Display and User Interface. The display system utilized DirectX 3D to render
stereoscopic images and a shape probe (gauge). The gauge was used to indicate the local normal direc-
tion. It had a disk-like base and a stick perpendicular to the disk base. Since the images were rendered
offline and the probe was rendered in real time, the probe position needed to be aligned with the sur-
faces in the pre-rendered images. The key requirement was to attach the center of the probe precisely
on the surface, neither in front of nor behind the object surface.

We recovered the surface position p (where we wish to place the center of gauge) from the depth map
by ray casting (see Figure 4). For a pixel position (x, y), its corresponding position on the surface is:

p = d
fc

×
(sw

w
× (x − w/2),

sw

w
× (h/2 − y), fc

)
, (1)
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Fig. 4. Surface position recovery.

where w and h are the resolution of the image, sw is sensor width, fc is focal length, and d is the depth
value of p. Thus, we aligned the prerendered image and real-time rendered gauge in 3D space.

The gauge was first rendered in the monocular frustum using DirectX 3D. When the stereo setting
was turned on, the left image and right image of the gauge was automatically generated in the left
and right frustum by the Nvidia 3D vision kit. To put the disk center on the surface of the object,
we matched the disparities of the disk and the pre-rendered image by adjusting the 3D vision kit
parameters. Thus, the system fixed the position of the disk center at the surface so that subjects could
only adjust the gauge orientation.

When the subjects moved the mouse, the mouse displacements in the horizontal and vertical direc-
tions were mapped to rotation of the gauge about the vertical axis and horizontal axis in 3D space,
respectively. With these user interface settings, the subjects could easily adjust the gauge to the de-
sired orientation.

3. PERCEPTION EXPERIMENT

3.1 Stimuli and Conditions

Figure 3 shows the stimuli used in the experiment, generated as described in Section 2.2.1. In the
stimuli, each object has a randomly generated surface on which the estimates of surface normal were
made. This surface is referred as the object surface. Each object was rendered from three parallel
views: left camera, center camera and right camera. Each stimulus object was presented under two
viewing conditions: a non-stereoscopic view displayed from the center camera (monocular cues) and a
stereoscopic view displayed from the left and right cameras (stereoscopic cues). Therefore, there were
8 object-by-view stimulus combinations (4×2) for each subject. All the images were viewed binocularly
through the shutter glasses.

3.2 Subjects

Six male and two female subjects (mean age 26.3, SD 3.9) participated in the experiment. Subjects
were students or research fellows at the university. All subjects had normal or corrected-to-normal
vision; six wore glasses during the experiment. All of them were naive to the purpose of the study and
provided their informed consent. Three of the subjects had previous experience with S3D psychophysi-
cal tests, and others had little or no experience. We verified all subjects’ ability to see stereopsis by the
ACM Transactions on Applied Perception, Vol. 10, No. 3, Article 15, Publication date: August 2013.
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Randomdot Stereotest (Stereo Optical Company, Inc. Chicago, IL). All of them had good stereo acuity
(<40 seconds of arc).

3.3 Procedure

We used a gauge figure adjustment task [Koenderink et al. 1992] to estimate people’s perception of
the shape of the objects. Subjects were shown a series of gauges placed at different surface points in
random order and asked to adjust each gauge to appear normal to the local surface.

Before the experiment, subjects practiced two tasks with an additional stimulus. First, subjects were
required to put the mouse at an arbitrary place on the object surface after which the program would
display a gauge with ground truth orientation. The intent was to give subjects understanding of the
concept of surface orientation and in how to interpret the direction of the gauge figure. Second, subjects
performed the gauge figure task with a reference gauge. When subjects confirmed their estimation, the
program calculated the angular difference between the estimated angle and ground truth angle. If the
difference was larger than a threshold (15◦ in practice), the program displayed a green color reference
gauge to show the surface orientation. The subjects were required to adjust the gauge until the angular
difference was less than the threshold. The practice lasted about 10–20 minutes.

For each object, 80 orientation estimates were sampled evenly crossed the entire object surface and
tested in random order. All the orientation estimates for a given object-by-view stimulus combination
were made in a block, and then the next combination was measured. We separated the 8 blocks into
2 sessions. Each session was tested on different days to avoid potential eye and/or hand strain. There
was no time limit for each trial, but subjects were encouraged to do the test with consistent speed so
that they would not spend too much time on a particular trial. It took subjects about 30–45 minutes to
finish each session.

4. RESULTS AND DISCUSSION

4.1 How Well Do People Perceive the Shape of Transparent Objects, and Does a Stereoscopic View
Improve Accuracy?

We used the 3D angular difference between perceived and ground truth normal directions as the per-
ceptual error. Mean errors for every subject and every object under both viewing conditions were calcu-
lated to describe the accuracy of perceived normal direction. We found that the potential improvement
assuming a bas-relief compared to Euclidean model [Koenderink et al. 2001; Belhumeur et al. 1999]
was very small (about 1◦), so we used the original (uncorrected by bas-relief) data in this article.

Figure 5 shows mean errors for each subject and viewing condition. We found that subjects could
perceive the normal direction of transparent surfaces consistently: mean error across all trials was
22.7◦. Moreover, perceived errors from stereoscopic view were smaller than those from nonstereoscopic
view (21.1◦ versus 24.4◦). A repeated-measures ANOVA on estimation error by view condition and
subject found a significant main effect of view condition (F(1, 7.0) = 106.8, p < 0.001).

Figure 6 shows mean errors for each object and viewing condition. A repeated-measures ANOVA
showed that the effect of object was significant (F(2.5, 17.49) = 3.66, p = 0.039). The perceived nor-
mal directions from stereoscopic view were more accurate than those from non-stereoscopic view for
each object. The interaction between view condition and object was not significant (F(3, 21) = 2.56,
p = 0.082).

We quantified the reliability of the estimation by comparing the estimated direction against the
median vector of estimated normal directions [Cole et al. 2009]. We randomly chose 1000 gauge set-
tings and plotted their errors relative to ground truth and the median vector in Figure 7. The figure
shows that the errors were clustered towards the center of each plot. Figure 8 shows the cumulative
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Fig. 5. Mean estimation errors for each subject and viewing condition (the error bars show confidence intervals (95%)).

Fig. 6. Mean estimation errors for each object and viewing condition (the error bars show confidence intervals (95%)).
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Fig. 7. Scattering of error from 1000 randomly selected trials. (a) non-stereo error from ground, (b) stereo error from ground,
(c) non-stereo error from median, (d) stereo error from median. Radial distance is the magnitude of the error, compass direction
is the direction on the screen.
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(a) 16 largest errors (non-stereo) (b) 16 largest errors (stereo)

Fig. 9. Example of localized errors. The gauges show median vectors of estimated normal direction for the positions with the
largest errors.

distribution of errors as a function of increasing estimation error. We found that errors from ground
truth were larger than those from the median vector, and errors from non-stereoscopic were larger
than those from stereoscopic views. Compared with chance performance (mean error of 90◦) or the
estimation error from smooth shaded images (mean error of 24◦ reported by Cole et al. [2009]), both
non-stereoscopic and stereoscopic view provided reliable estimation, and estimates from stereoscopic
view were more reliable than those from non-stereoscopic view.

4.2 Is Error from Ground Truth Localized?

Since we had densely sampled test points we were able to analyze if error was localized in a few
important areas. For each image condition, we used the median vector to represent the estimated
normal direction at each location and sorted the estimation error in nondecreasing order. We selected
the 16 (out of 80 in total) surface locations with the largest errors and rendered their median vector
as the gauge figure in the original image. Figure 9 shows one of these examples. We found that the
highest errors were localized in two particular types of areas. One was the ridge areas where the
normal directions changed too fast to be estimated accurately. The other was smoothly textured areas,
which will be further analyzed in Section 4.3.
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Fig. 10. Orientation maps. (a) an object rendered in two scenes, (b) edge map, (c) orientation map, (d) edge-aware orientation
map, (e) orientation ground truth.

4.3 Edge-Aware Orientation Map

Inspired by the similarity between mirror reflection and transparent refraction and previous work of
[Fleming et al. 2004, 2009], we used an edge-aware orientation map to analyze how people are able to
perceive the shape of transparent objects with simple refraction geometry (single refractive interface
or a “thin lens”).

To visualize optical information from images and 3D models, we rendered the same object with
two different environment maps (Figure 10(a)) and presented three images to illustrate the visual
information in the object surface areas. The first image was an edge map. It was obtained by calculating
gradient magnitudes at each pixel using the Sobel operator in OpenCV [Bradski and Kaehler 2008].
Figure 10(b) shows that an object can have similar edges under very different environment maps.
Most of these edges were located in boundaries and ridge areas of the object. Because edges often arise
from object structure that is relevant to the goal of visual perception, they can provide basic shape
information, such as boundary and concavity/convexity.

The second image was an orientation map. We first calculated eigenvalues and eigenvectors at each
pixel from the structure tensor [Knutsson et al. 2011], which has been widely used in edge detection
and feature extraction [Harris and Stephens 1988]. Specifically, the structure tensor is:

s =
∑

u

∑
v

w(u, v)
[

Ix
2 Ix Iy

Ix Iy Iy
2

]
, (2)

where Ix and Iy are the partial derivatives of image intensity I with respect to x and y, and w is a
Gaussian smoothing operator. We calculated the structure tensor from a gray scale image in a neigh-
borhood, u and v (7 × 7 pixels in practice), surrounding a given pixel. We adopted the direction of least
curvature (the one whose corresponding eigenvalue has the smallest absolute value) as the local ori-
entation (range in [0, 180) degrees). We found that edge-aware orientation maps of a given object in
different environments could be very similar (Figure 10(c)). This similarity may underlie the ability of
people to consistently perceive shapes of transparent objects in different scenes. Fleming et al. [2004]
reached a similar conclusion when they studied reflective objects.

The third image was an edge-aware orientation map combining the orientation map with a confi-
dence map. We used the edge map for the confidence metric because (1) the visual system is more
sensitive to the variation in intensity than the intensity itself [Van Nes et al. 1967] and (2) the orien-
tation of a constant or slowly varying intensity region is ill-defined. There is a clear ecological utility
to the visual system’s sensitivity to variations over space and time. Being able to accurately sense
changes in the environment is crucial to our survival [Thompson et al. 2011]. Figure 10(d) shows an
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(a) (b) (c)

Fig. 11. Example of areas in an edge-aware orientation map with little orientation information. (a) Two areas (denoted by two
rectangles) with little local orientation information in the image (ground truth orientation is in Figure 10(e)). (b) The 16 gauge
settings with the largest error for this stimulus (non-stereoscopic view). (c) Azimuth angles (red) and orientation angles (green).

example of edge-aware orientation maps of a transparent object rendered in two different scenes. The
orientation is coded by hue and the confidence by saturation; if the color of pixels is more desaturated,
then this indicates that these pixels have less salient orientation information.

For each object, we obtained the orientation ground truth by projecting surface normals to the image
plane. We aligned the image plane with the X−Y plane, and set the direction normal to the image and
towards the observer as the Z direction. We decomposed the normal direction into two angles: a slant
angle φ, and an azimuth angle θ :

φ = arccos(z), θ = arctan
( y

x

)
, (3)

where [x, y, z]T is the normalized normal vector.
We found that the direction of the azimuth angle is perpendicular to the direction of minimum cur-

vature in the depth map (for proof see appendix A). Since the dominant orientation angle is aligned
with the direction of minimum curvature, we calculated the orientation angle of the model by rotating
the azimuth angle 90◦. Compared with the estimating minimum curvature from the depth map, ob-
taining the orientation angle from the azimuth angle is more robust because we already have accurate
value of normals for each pixel from the rendering process. This orientation map (for example, see
Figure 10(e)) was regarded as the ground truth. Note that the pixel colours are saturated since these
are ground truth data (confidence is high). Figure 11(c) shows the azimuth angles (red) and orientation
angles (blue) of a stimulus. If the true azimuth angle and the orientation in the image are perpendicu-
lar to each other in a local area, this area may provide accurate visual cues for the surface orientation.

Figure 11(a) shows two areas with little orientation information in an image. The first area (denoted
with a red rectangle) is on the top left of the object. It is close to the object boundary and most of
its nearby areas have accurate orientation information. On the other hand, the second area (denoted
with a green rectangle) is relatively far from the object boundary and its nearby areas have large
orientation errors. Figure 11(b) draws the 16 (out of 80 in total) gauge settings with the largest error
for this stimulus. We found that the sampling points in the green rectangle area had larger error than
those in the red rectangle areas even though both areas lacked local orientation information. How
did people have very different estimation accuracy in two areas that both had little local orientation
information? One possible explanation is that people tend to interpolate the orientation information
from nearby areas when the local orientation information is impoverished or ambiguous. The shape of
the first area was perceived relatively more accurately than that of the second area since the subjects
could interpolate “correct” orientation information from nearby areas. This figure also demonstrates
the predictive capability of our edge-aware orientation map.
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(b) azimuth angles (stereo)
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(c) slant angles (non-stereo)
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Fig. 12. Plot of azimuth and slant angles from 1000 randomly selected trials.

4.4 How Does Stereoscopic View Improve Accuracy?

In developing the edge-aware orientation maps we noted that the projection of the normal direction to
image space was perpendicular to the ground truth of the orientation map. The normal direction could
be estimated from the structure tensor of the depth map and more accurate depth information could
help to determine the azimuth (tilt) and slant angles of the surface normal [Stevens 1983]. It is well
known that stereospsis can provide robust relative depth information for surface orientation estima-
tion [Kersten et al. 2006; Bridge and Cumming 2008; Allison et al. 2009]. Therefore, the accuracy of per-
ceived azimuth angles could be improved by more accurate depth information from stereoscopic view.

However, disparities of features in a transparent object seldom correspond to the depth of the surface
itself and often violate the epipolar constraint (i.e. have vertical disparities and skew projections of
corresponding points into the scene). For specular objects, these disparity signatures have long been
used by computer vision stereo algorithms to help distinguish Lambertian and specular features and
to aid surface reconstruction [Blake and Brelstaff 1988]. A recent study suggests that similar processes
may operate for specular perception in humans [Muryy et al. 2012]. It is possible that stereopsis may
improve performance by providing depth information directly in areas of reliable stereoscopic cues as
well as by helping to identify areas corresponding to refractive specularities.

Figure 12 shows the azimuth and slant angles from 1000 randomly selected trials compared with
the corresponding ground truth angles. For azimuth angle, the mean error with non-stereoscopic
view was 28.7◦, and with stereoscopic view was 23.5◦. For slant angle, the mean error with non-
stereoscopic view was 15.0◦, and with stereoscopic view was 13.0◦. Azimuth angle estimation error
was 18% smaller for stereoscopic view compared to nonstereoscopic view. This result confirms our
ACM Transactions on Applied Perception, Vol. 10, No. 3, Article 15, Publication date: August 2013.
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prediction that stereoscopic 3D indeed improves the perceived accuracy of azimuth angle, and finally
improves the accuracy of perceived surface orientations.

5. CONCLUSION

5.1 Main Findings

First, people are able to consistently perceive the normal direction of thin transparent objects. This
was demonstrated by experiments using the gauge task and theoretical analysis using edge-aware
orientation maps. The task is difficult and substantial errors remain; however, performance is similar
to previous reports for specular and Lambertian surface perception [Fleming et al. 2004; Cole et al.
2009].

Second, stereoscopic viewing improves the precision of surface orientation perception. This was
demonstrated by comparing the perceptual accuracy from stereoscopic and non-stereoscopic viewing
conditions. The relationship (perpendicularity) between the orientation angle ground truth and the
azimuth angle of normal directions provides a geometric basis for this improvement.

Third, perceptual errors were concentrated in particular areas of the refractive surface. We found
observers had larger perceptual errors in two major areas. The first area was the ridge area in which
normal directions change too fast to be perceived accurately. The second area was smoothly textured
areas surrounded by “incorrect” orientation information in the image.

5.2 Generality of the Result

For transparent and other objects, there is a large space of variation in shapes and materials and these
objects can be placed in many types of environments under diverse lighting conditions. The shape can
be varied from regular geometries such as cubes and spheres to highly complicated forms. Also the
object can have all kinds of colors, translucency and reflection/refraction properties. Although we only
use 4 relatively simple objects as the stimuli and future work is required to determine whether the
findings generalize to larger classes of objects, since the objects were randomly generated and had
variation in surface curvature they can, to some extent, represent many potential shapes.

While we tested only 8 subjects we have a considerable amount of data for each due to the
repeated-measures design. Combined with the fact that the experiments took place in a well-controlled
environment we have good estimates for individual observers. This combined the fact that intersubject
variability was modest lead us to believe the results will generalize to a larger sample.

As previously discussed the results do not necessarily generalize to thick transparent surfaces.
However, example images suggest that the orientation field approach may have utility here, but this
remains to be tested.

5.3 Limitations and Future Work

Our work has several limitations that will be addressed in future work.
First, the objects were designed so that most of light was refracted only once. Although they rep-

resent several important natural phenomena, many transparent objects violate this constraint; for
example, when light crosses multiple optical interfaces such as the front and back of a thick glass ob-
ject or when there is internal reflection. The light paths in those objects are much more complex than
those that we studied in this article. However, we could extend this study to thick transparent objects.
Figure 13 shows an example of a thick transparent object and its orientation maps. The figure suggests
that the edge-aware orientation map might still be able to provide correct shape information in some
areas.

ACM Transactions on Applied Perception, Vol. 10, No. 3, Article 15, Publication date: August 2013.
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(a) original image (b) edge-aware orientation map (c) ground truth orientation map

Fig. 13. Edge-aware orientation map of a thick transparent object.

Second, the current experiment used only one environment map to generate stimuli, which may
not represent the diversity of natural scenes. While empirical evidence from previous work [Fleming
et al. 2004] and theoretical analysis in Section 4.3 showed that shape from reflective/refractive ob-
jects mainly depends on the orientation map rather than information from the scene, it is still neces-
sary to test subjects in different natural scenes and test the generality of the findings. While natural
scenes have wide variety but well-known statistical regularity, the use of orientation information in
transparent shape perception suggests there may be differences between object perception in natural
environments and carpentered environments with dominant horizontals and verticals.

Finally, we found that particular areas of objects were difficult to perceive even with stereoscopic
viewing. It would be interesting to investigate what types of objects are most challenging for shape
perception.

APPENDIX

A. ORIENTATION FROM PROJECTED NORMAL DIRECTION

For a position (x, y) in a depth map I, the structure tensor (with block size of 1 × 1) is:
[

Ix
2 Ix Iy

Ix Iy Iy
2

]
, (4)

where Ix and Iy are the partial derivatives I with respect to x and y. The secondary eigenvector (the
one whose corresponding eigenvalue has the smallest absolute value) of the structure tensor is:

�e = [−Iy/Ix 1]T (5)

and its direction can be considered as the orientation of the 3D model [Fleming et al. 2009].

PROOF. Without loss of generality, we will show that the projection of a normal direction (in a local
space) to the image plane is perpendicular to the secondary eigenvector of the structure tensor.

Given a pixel position (x, y) with the gradient [Ix Iy]T in the depth map I, the normal of the local
patch is:

�n = [−Ix −Iy 1]T . (6)

Its projection to image plane is:

�np = [−Ix −Iy ]. (7)

Because �e · �np = 0 where · is the dot operator, proof done.
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