
Vol.:(0123456789)1 3

Virtual Reality (2020) 24:515–524 
https://doi.org/10.1007/s10055-019-00416-7

ORIGINALPAPER

Comparing head gesture, hand gesture and gamepad interfaces 
for answering Yes/No questions in virtual environments

Jingbo Zhao1,2   · Robert S. Allison2

Received: 13 November 2018 / Accepted: 27 November 2019 / Published online: 30 November 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
A potential application of gesture recognition algorithms is to use them as interfaces to interact with virtual environments. 
However, the performance and the user preference of such interfaces in the context of virtual reality (VR) have been rarely 
studied. In the present paper, we focused on a typical VR interaction scenario—answering Yes/No questions in VR systems 
to compare the performance and the user preference of three types of interfaces. These interfaces included a head gesture 
interface, a hand gesture interface and a conventional gamepad interface. We designed a memorization task, in which partici-
pants were asked to memorize several everyday objects presented in a virtual room and later respond to questions on whether 
they saw a specific object through the given interfaces when these objects were absent. The performance of the interfaces 
was evaluated in terms of the real-time accuracy and the response time. A user interface questionnaire was also used to 
reveal the user preference for these interfaces. The results showed that head gesture is a very promising interface, which can 
be easily added to existing VR systems for answering Yes/No questions and other binary responses in virtual environments.
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1  Introduction

Recent improvements in sensor technologies have enabled 
human body movements to be accurately tracked in real 
time. With novel depth sensors such as the Kinect and the 
Leap Motion, a large volume of algorithms has been pro-
posed and developed for body gesture (Lun and Zhao 2015) 
and hand gesture recognition (Cheng et al. 2016). The accu-
rate and fast head tracking sensors in head-mounted displays 
(HMDs), such as the Oculus Rift DK2, also make real-time 
head gesture recognition possible (Zhao and Allison 2017) 
in addition to the systems that use cameras to track head 
movements (Morimoto et al. 1996; Terven et al. 2014). One 

possible application of gesture recognition is to integrate 
such algorithms into VR systems to interact with virtual 
worlds. A typical interaction scenario in VR systems is to 
answer Yes/No questions asked by virtual avatars or raised 
by VR systems. For instance, Abate et al. (2011) presented 
an augmented reality (AR)-based tour system that may 
require an interface for answering questions asked by virtual 
tour guides. Answering Yes/No questions in VR systems is 
usually done by buttons pressed on handheld devices or by 
using handheld devices to point to corresponding options in 
menus (as in the HTC Vive). However, potential problems 
for using handheld devices are that it may hinder or pre-
vent users from using their hands to perform tasks, such as 
picking objects with their fingers or performing hands-free 
locomotion in virtual environments.

In the current study, we propose to use head gesture 
and hand gesture as alternatives to conventional gamepad 
interfaces or other interfaces that employ handheld devices 
to answer Yes/No questions in virtual environments. The 
head gesture interface and the hand gesture interface do not 
require the user to hold additional devices in their hands. 
This may give users much freedom in performing activities. 
Comparing to the hand gesture interface and the gamepad 
interface, the head gesture interface has a unique advantage 
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that it does not require extra devices for tracking head move-
ments as head movements are directly tracked in VR systems 
that use head-mounted displays (HMDs). Similarly, CAVEs 
are usually equipped with tracking glasses or computer 
vision systems that monitor head movements. Thus, head 
movements data are readily available for head gesture rec-
ognition. To implement a head gesture interface, one would 
only need to integrate existing head gesture recognition algo-
rithms into the VR system.

However, head gesture interfaces and hand gesture inter-
faces may have their own problems. For example, in head 
gesture interfaces, when responses are given by head move-
ments tracked by HMDs or tracking glasses, the heaviness 
of the head worn devices may give people strain (Wille and 
Wischniewski 2015), typically neck pain, when performing 
rapid head movements such as nodding or shaking. Other 
issues include blurred images and increased simulator sick-
ness when rapid head movements are made. In comparison, 
hand gesture interfaces may not be as physically demanding 
as head gesture interfaces since users’ hands can be directly 
tracked by optical sensors without users holding any devices. 
However, these optical sensors usually have limited track-
ing range and the tracking performance will degrade when 
these sensors are interfered with other infrared (IR) devices 
in a VR system. On the other hand, gamepad interfaces are 
familiar devices to people. They may be preferred to other 
types of interfaces as people may have substantial experi-
ence using the gamepad interface.

The goal of the present study is to systematically evaluate 
and compare a head gesture interface, a hand gesture inter-
face and a gamepad interface to answer Yes/No questions 
(or make other binary decisions) in virtual environments. 
The results of the study may help researchers or designers 
to select a suitable interface in their VR systems to answer 
such type of questions.

2 � Related work

Previous work on the comparison of interaction techniques 
or interfaces to the conventional gamepad interface in 
VR systems primarily focused on virtual locomotion and 
navigation.

Nabiyouni et al. (2015) evaluated the Virtusphere tech-
nique, the real-walking interface and the gamepad interface. 
They showed that the Virtusphere as a moderate-fidelity 
technique was significantly outperformed by a high-fidel-
ity real-walking interface and a well-designed low-fidelity 
gamepad interface as the Virtusphere was fatiguing and dif-
ficult to control due to its large inertia. Conversely, the real-
walking interface was natural to people and the gamepad 
interface had a clear mapping between joystick movement 
and users’ intended direction of travel, so it was easy to use.

Yan et al. (2016) proposed three types of finger gestures 
based on the Synaptics ForcePad for virtual walking. The 
proposed methods were compared to the gamepad inter-
face in terms of their performance. The gamepad interface 
was found to have shorter task completion time but have 
problems in overshooting. It was also either too sensitive 
or not responsive compared to finger gesture interfaces.

Zielasko et al. (2016) evaluated five locomotion tech-
niques. Among these techniques, the Adapted Walking in 
Place and the Accelerator Pedal involved lower limb move-
ments. Leaning required upper body movements while 
seated. The Shake Your Head technique used only head 
movements tracked by an HMD. Similarly, these tech-
niques were also compared with the traditional gamepad 
interface. They found that the Accelerator Pedal and the 
leaning technique performed better than other techniques 
in terms of user preference and task performance.

Cardoso (2016) compared a hand gesture interface 
based on the Leap Motion sensor, a gamepad interface 
and a gaze-based interface for locomotion in VR. Results 
showed that the hand gesture performed better than the 
gaze-based interface but worse than the gamepad interface.

Kitson et al. (2017) compared several seated leaning 
locomotion techniques to the joystick interface. They 
reported that participants in general preferred the leaning 
techniques as they are fun, engaging and more realistic, 
but the joystick interface was still easier to use and control.

More recently, Coomer et al. (2018) compared four 
locomotion methods, including the joystick interface, 
the Arm-Cycling, the Point-Tugging and teleporting. The 
Arm-Cycling is a locomotion technique that creates ego-
centric motion in VR based on the displacements of HTC 
Vive controllers held in users’ hands when users perform 
cycling motion of their arms with the triggers on the HTC 
Vive being pressed down. The Point-Tugging is method 
that requires users to grab a virtual point in virtual envi-
ronments by pressing the triggers on the HTC Vive con-
trollers and then tug to move themselves in virtual envi-
ronments, followed by releasing the triggers to complete 
the movement. They concluded that the Arm-Cycling was 
the best locomotion method among these four techniques 
as it gave better sense of spatial awareness and lower simu-
lator sickness scores.

In addition, the work by Morency et al. (2007) is related 
to ours. They showed that head gesture was preferred to 
mice or keyboards by participants for responding con-
firmation questions prompted by dialog boxes in their 
experiments.

But to the authors’ knowledge, there has been no 
research that evaluated and compared head gesture inter-
faces, hand gesture interfaces and gamepad interfaces to 
answer Yes/No questions in virtual environments.
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3 � Methods

The functionality of each interface and the associated ways 
to indicate Yes/No responses are shown in Table 1. We dis-
cuss the algorithm of each interface in detail in this section.

3.1 � Head gesture interface

Zhao and Allison (2017) presented a real-time head ges-
ture recognition algorithm on HMDs using cascaded hid-
den Markov models (HMMs) (Rabiner 1989). An HMM is 
governed by parameters including N the number of hidden 
states, M the number of observation symbols and the model 
parameter � = (A,B,�) , where A is the matrix that represents 
the transition probability between states, B the matrix that 
represents the emission probability of a symbol observed 
from a specific state and � the initial state probabilities. 
The structure of the head gesture recognition framework 
(recapped in Fig. 1) consists of four components, which are 
the vector quantization model, the simple gesture layer, the 
complex gesture layer and the output selection module. The 
simple gesture layer has seven parallel left–right HMMs for 
recognizing simple gestures such as rotating left and rotat-
ing right, while the complex gesture layer has two parallel 
left–right HMMs for recognizing complex gestures: nodding 
and shaking. The Baum–Welch algorithm was used to train 
HMMs to obtain their respective model parameter � , and 
the forward procedure was used to evaluate an observation 
sequence S , which consists of discrete symbols of quantized 
head angular velocities, using trained HMMs with their 
respective model parameter � . During real-time operation, 
the vector quantization module reads head angular velocities 
from the HMD—the Oculus Rift DK2, and quantizes the 
continuous head angular velocities into discrete symbols. 
These discrete symbols are further buffered and fed into the 
simple gesture layer to determine whether a simple gesture 
exists in the buffered sequence. The outputs from the simple 
gesture layer are further buffered and fed into the complex 
gesture layer to determine whether a complex gesture has 
been made. Finally, the output selection module determines 
the final gesture using the outputs from the simple gesture 
layer and the complex gesture layer. We used the original 
implementation from the authors for the head gesture inter-
face, and the implementation was trained using head ges-
ture data collected from nineteen participants. The average 

accuracy for recognizing complex gestures was 98.5%. We 
only used three types of gesture outputs, including remain-
ing still, shaking and nodding, for the head gesture interface. 
We ignored other head gesture outputs. For this interface, 
nodding represents Yes and shaking denotes No.

3.2 � Hand gesture interface

Marin et al. (2016) proposed a set of robust features for rec-
ognizing static hand gestures with the hand skeletons tracked 
by the Leap Motion sensor. The specific feature descriptor 
selected from the set for our implementation was:

where Fi is the position of the fingertip and i the index of a 
finger, C the position of the palm center, n the normal vec-
tor emanating from the palm and h the vector from the palm 
center to the direction of the fingers. These parameters are 
directly available from the tracked hand skeleton of the Leap 
Motion sensor. Px

i
 , Py

i
 and Pz

i
 are the extracted features. As 

pointed out by the authors, the set of equations normalize 
fingertip positions with respect to hand position and orienta-
tion. Fingertip angles, positions and elevations are embed-
ded in the extracted features Px

i
 , Py

i
 and Pz

i
 . The extracted 

features can be used to train classifiers such as the support 
vector machine (SVM) (Chang and Lin 2011) to recognize 
static gestures.
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i
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i
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⋅ h
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i
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)
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Table 1   Definition of interface Yes No Standby

Head gesture Nodding Shaking Head remaining still
Hand gesture Waving an OK gesture Waving an extended hand Hand remaining still
Gamepad Pressing button 5 Pressing button 6 Hand remaining still

Vector Quantization

Simple Gesture

Complex Gesture

Output Selection

Head Angular Velocities

Recognized Head Gesture

Fig. 1   Head gesture interface
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Initially, we defined three types of hand gestures. The 
OK gesture represents Yes, and the extended hand gesture 
means No. The fist gesture was also defined as the standby 
gesture for resting (Fig. 2). A problem using only the static 
hand gesture recognition algorithm is that it is difficult to 
determine whether users intend to confirm their responses 
as static hand gestures are continuously recognized and a 
response can be determined before users finishing making 
their intended gestures. Thus, we included two HMMs to 
monitor the trajectory of the hand velocity to detect whether 
users are waving their hands or not. The outputs from the 
SVMs and the HMMs are fused by a set of rules to gener-
ate the final gesture: if the user waves a hand with an OK 
gesture, then the algorithm will confirm that the response 
from the user is Yes; similarly, if the user waves an extended 
hand, the response will be confirmed as No; otherwise, the 
algorithm considers that there are no meaningful responses 
given by users. Therefore, the types of hand gestures in the 
hand gesture interface were extended to six types, includ-
ing: static OK gesture, static extended hand, static fist, wav-
ing OK gesture, waving extended hand and waving fist. The 
structure of the hand gesture recognition algorithm is illus-
trated in Fig. 3. 

We collected hand gesture samples from twelve partici-
pants (age: 20–33, 7 males, 5 females) for the six types 
of gestures. Each participant was asked to perform four 
sessions of data collection. In each session, a partici-
pant was asked to perform the six types of hand gestures, 
respectively, and each type of hand gesture was recorded 
for 4 s. The features Px

i
 , Py

i
 and Pz

i
 extracted from the col-

lected samples were used to train three SVMs using the 
one against one approach. To recognize a gesture during 
real-time operation, the voting strategy was used, meaning 
that the type of gesture that received the highest number 
of the votes given by SVMs is the winner. The average 
accuracy for recognizing static hand gestures is 99.6%. 
Two HMMs were trained using hand velocity data calcu-
lated from the hand centers. Specifically, one HMM was 
trained using hand velocities of static gestures, while the 

other was trained using hand velocities of waving hands. 
During operation, the HMM that produces the highest 
posterior probability when evaluating hand velocity data 
with their respective model parameter � was chosen as the 
winner and its class label was given as the output. The 
average accuracy for recognizing whether a hand is waving 
or not is 98.1%. The theoretical average accuracy for rec-
ognizing dynamic hand gestures was 97.7% by multiplying 
the average accuracy for recognizing static hand gestures 
(99.6%) and the average accuracy for detecting moving 
hands (98.1%).

An advantage of the proposed hand gesture recognition 
framework is that it can be further extended to recognize 
combinations of different static hand gestures and differ-
ent shapes of hand velocity trajectories. Thus, it has the 
potential to deal with more complex gesture recognition 
scenarios, but the average accuracy may decrease when 
more gestures are added.

3.3 � Gamepad interface

The gamepad interface (Fig. 4) was implemented based 
on a Logitech Dual Action gamepad. Specifically, users 
pressed button 5 on the gamepad for Yes and pressed but-
ton 6 for No.

Fig. 2   Hand gestures (OK 
gesture, extended hand and 
standby)

Normalization

SVMs

Calculate Velocity

HMMs

Fusion

Hand Centres Finger Tip Positions

Recognized Hand Gesture

Fig. 3   Hand gesture interface
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4 � Experiment

4.1 � Introduction

The goal of the experiment was to evaluate and compare 
performance and user preference of the head gesture inter-
face, the hand gesture interface and the gamepad interface 
for answering Yes/No questions in virtual environments. 
To achieve the goal, a memorization task was designed. 
The task asked participants to memorize the objects pre-
sented in a virtual room with a 30-s exposure period. Then, 
these objects were removed, and participants were asked 
whether they saw a specific object by answering Yes or No 
through a given interface. In Fig. 5a–c, we show the three 

stages of the experiment, including initialization stage, 
memorization stage and question stage. When a participant 
made a response, a confirmation (Yes/No) was prompted 
as shown in Fig. 5d.

4.2 � VR hardware and software

The host machine for the experiment was a desktop computer 
equipped with an Intel i7 2.8 GHz. CPU, 4 GB memory and 
an AMD Radeon HD 6850 graphics card. The operating sys-
tem was Windows 7. Other experimental devices included 
an Oculus Rift DK 2, a Leap Motion sensor and a Logitech 
Dual Action gamepad connected to the host machine.

The experimental application and the algorithms for 
three interfaces were implemented in the Worldviz Vizard 
5.0 using Python 2.7. The training of HMMs was done in 
MATLAB as it offered an HMM library convenient to use. 
Model parameters of HMMs were obtained after training. 
For real-time application, we only needed to implement the 
forward procedure of HMMs using Python in Vizard with 
the model parameters to evaluate movement sequences cap-
tured in real time. The support vector machine used in our 
study came from the LibSVM library (Chang and Lin 2011). 
Similarly, we also conducted training in MATLAB and then 
performed real-time application using the testing function of 
SVM with Python in Vizard.

4.3 � Metrics

The metrics consisted of objective measures and subjec-
tive measures. The objective measures were: response time, 

Button 5
Yes

Button 6
No

Fig. 4   Gamepad interface

Fig. 5   Experimental stages
Countdown for Memorization

Countdown between Questions

(a) Initialization Stage (b) Memorization Stage 

(c) Question Stage (d) Response Made 
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which is the time interval between when a question was 
prompted and when a response was made, and real-time 
accuracy, which is the percentage of the objects that were 
correctly classified as present or not during real-time opera-
tion. The objective measures were applied on the recorded 
experimental data to extract the corresponding parameters.

The subjective measures were: ease-to-learn, ease-to-use, 
natural-to-use, fun, tiredness, responsiveness and subjective 
accuracy. The subjective measures were evaluated using a 
user interface questionnaire modified from the one by Nabi-
youni et al. (2015). The items given in the questionnaire 
are shown in Table 2. The seven-point Likert scale (from 
strongly disagree to strongly agree) was used to rate each 
factor.

4.4 � Procedure

Informed consent was obtained from all twelve participants 
(age: 20–38, 7 males, 5 females) in accordance with a pro-
tocol approved by the Human Participants Review Subcom-
mittee at York university. Twelve participants were divided 
into six groups. Each group covered a permutation of the 
gesture interfaces. Thus, six groups covered all six permuta-
tions of the three gesture interfaces. For each interface, four 
trials were conducted. The first trial was for training and was 
not considered for the data analysis, while the remaining 
three trials were the actual experiments. During experimen-
tal sessions, participants wore the Oculus Rift DK2 and sat 
60 cm in front of the computer monitor, on which the track-
ing camera of the Oculus Rift DK2 was mounted. The Leap 
Motion sensor was attached onto a stand and was placed 
30 cm in front of the participants. At the beginning of a trial, 
a participant was exposed to a virtual room, facing a bench 
placed in the front of the room. After the researcher pressed 
the start button, twenty objects were randomly selected from 
a list of thirty objects. The list consisted of everyday objects, 
including a camera, a cell phone and a chair, etc. The 3D 
models of the objects were obtained from www.turbo​squid​
.com. Among the selected objects, ten were placed onto 
the bench with a random order and participants were given 
30 s to memorize the presence of these objects. Another ten 
objects were not presented in the room and were only used 

for generating questions. After the 30-second memorization 
period, the presented objects were removed from the room. 
Participants were sequentially asked about the existence of 
the twenty objects with a random sequence. Questions had 
the form “Did you see a cell phone?” (Fig. 5c). Each time 
the participant made a response through the given inter-
face; a 3-s waiting period was introduced before the next 
question was prompted. The object names, the timestamps 
when the questions were prompted and the timestamps when 
the responses were made, the existence of objects and the 
responses of the participants were recorded for data analysis. 
After participants completed four trials for a given interface, 
they were asked to complete the user interface questionnaire 
to evaluate the interface they used.

4.5 � Results

We performed the data analysis in MATLAB 2016a and R 
3.4.2. One-way repeated-measure ANOVAs were applied on 
each factor of the objective measures and subjective meas-
ures to reveal whether there were significant effects between 
the types of interfaces. Post hoc pairwise comparisons were 
made using Tukey’s range tests.

We found a significant effect on response time 
( F(2, 22) = 50.84, p < 0.001 ). On average, the head gesture 
interface had the highest response time and the gamepad 
interface had the lowest, while the hand gesture was in the 
middle. A Tukey’s range test confirmed that the gamepad 
interface was significantly faster than the head gesture inter-
face and the hand gesture interface in terms of response time 
and there was no significant difference between the head 
gesture interface and the hand gesture interface (Table 3). 
The results (Fig. 6, bars denote the mean value and error 
bars denote the standard error of the mean) were expected 
since the head gesture interface required nodding or shaking 
for at least one cycle. This typically took longer time than 
pressing a button on the gamepad or waving hands in front of 
the Leap Motion sensor. We also found a significant effect on 
real-time accuracy (F(2, 22) = 16.70, p < 0.001) . A Tukey’s 
range test showed that the hand gesture interface was sig-
nificantly less accurate than the gamepad interface and the 
head gesture interface (Table 3). The real-time accuracies 
of the three interfaces are shown in Fig. 7. (Bars denote 
the mean value, and error bars denote the standard of the 
mean.) The factor is primarily determined by the accuracy of 
memorization of the objects, the control of the interfaces and 
the recognition performance of the interfaces. Although, in 
theory, the gamepad interface should have the best recogni-
tion performance as Yes/No is recognized by two buttons, 
we found the head gesture had a slightly higher real-time 
accuracy than the gamepad interface with the assumption 
that the memorization of objects by participants across three 
interfaces was the same. This suggested that using the head 

Table 2   The user interface questionnaire

1. The interface is easy to learn
2. The interface is easy to use
3. The interface is natural and intuitive to use
4. The interface helps make the task fun
5. Using the interface is tiring
6. The interface helps me respond quickly
7. The interface helps me make accurate responses

http://www.turbosquid.com
http://www.turbosquid.com
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gesture interface was less error-prone than the gamepad 
interface. The hand gesture interface had the lowest real-
time accuracy, which suggested that using hand gesture 
interface might introduce more errors into responses.

For subjective measures (Fig. 8, bars denote the mean 
value, and error bars denote the standard error of the 
mean), the gamepad interface was rated better than other 
interfaces in terms of ease-to-use, fun, tiredness, respon-
siveness and subjective accuracy, while the head gesture 
was rated slightly higher for ease-to-learn and natural-to-
use. The hand gesture interface was not preferred for all 
factors except tiredness as the head gesture interface was 
considered as the most tiring interface. We found a sig-
nificant effect on ease-to-use (F(2, 22) = 7.00, p = 0.004) , 
and a Tukey’s range test showed that the gamepad was 
significantly easier to use than the hand gesture interface 
(Table 3). A significant effect was also found on tired-
ness (F(2, 22) = 4.22, p = 0.028) , and a Tukey’s range 
test showed that the gamepad interface was significantly 
less tiring than the head gesture interface (Table 3). How-
ever, we did not find significant effects on other factors: 
ease-to-learn (F(2, 22) = 2.27, p = 0.13) , natural-to-use 
(F(2, 22) = 2.18, p = 0.14) , fun (F(2, 22) = 0.65, p = 0.53) , 
responsiveness (F(2, 22) = 2.89, p = 0.08) and subjective 
accuracy (F(2, 22) = 2.84, p = 0.08).

One interesting finding was that responsiveness and sub-
jective accuracy in the subjective measures did not agree 
with response time and real-time accuracy in the objective 
measures, respectively. For example, although subjectively 
participants indicated that the gamepad interface was more 
accurate than the head gesture interface, this was not the 
case when the accuracy was assessed objectively. Similarly, 
the head gesture interface took the longest time for mak-
ing responses on average in the objective measure, but par-
ticipants indicated that the hand gesture interface was less 
responsive than the head gesture.

Table 3   Results of the Tukey’s 
range tests on factors with 
significant effects (95% 
confidence level)

Factor Interfaces Difference P value Lower bound Upper bound

Response time Head versus gamepad 0.71 0.00 0.51 0.90
Hand versus gamepad 0.65 0.00 0.46 0.85
Hand versus head − 0.05 0.77 − 0.25 0.14

Accuracy Head versus gamepad 0.02 0.36 − 0.02 0.06
Hand vs gamepad − 0.07 0.00 − 0.11 − 0.03
Hand versus head − 0.09 0.00 − 0.13 − 0.05

Ease-to-use Head versus gamepad − 1.00 0.13 − 2.23 0.23
Hand versus gamepad − 1.83 0.00 − 3.07 − 0.60
Hand versus head − 0.83 0.23 − 2.07 0.40

Tiredness Head versus gamepad 1.67 0.03 0.14 3.19
Hand versus gamepad 1.33 0.09 − 0.19 2.86
Hand versus head − 0.33 0.85 − 1.86 1.19

Fig. 6   Response time

Fig. 7   Real-time accuracy
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The total scores of each interface rated by all partici-
pants are shown in Fig. 9. The score for the factor tired-
ness was inverted (strongly agree received one point and 
strongly disagree received seven points) to indicate how 
positive participants’ attitudes were toward tiredness. We 
found that the gamepad interface was preferred by six par-
ticipants, while the head gesture interface was preferred by 
five participants. Only one participant opted for the hand 
gesture interface. Thus, in general, the gamepad interface 
and the head gesture interface were equally liked, while 
the hand gesture was rejected. But in terms of the mean 
scores across participants (the 13th set of bars in Fig. 9), 
the gamepad interface still received the highest score.

5 � Discussion

Gamepads or other handheld devices are traditional inter-
faces for people to play games and have a long history for 
interaction in VR systems. For example, joysticks have been 
used for flying in virtual environments as a method for loco-
motion (Robinett and Holloway 1992). Because of people’s 
familiarity and previous experience with these devices, it is 
possible that even when new interfaces appear, they would 
still prefer these traditional devices as such devices may 
be more reliable. In addition, handheld devices are more 
familiar and would not take extra efforts for people to learn 
how to use them. In Fig. 9, six participants preferred the 
gamepad interface to other two interfaces. This showed that 
gamepads or handheld devices are still important devices 
for VR interactions.

Responding Yes/No through head nodding and shaking is 
a natural way for the interaction between people in the real 
world. In Fig. 8, the rating of natural-to-use was higher than 
other interfaces. Similarly, the interface was rated easier to 
use than other interfaces. As has been discussed, the primary 
problem with the interface is the heaviness of the HMD, 
which probably made people consider the head gesture inter-
face the most tiring one. We expect that by using an HMD or 
tracking glasses with lower weight or using computer vision 
systems for tracking, the tiredness for using the interface 
would be lowered. But given tiredness as the primary limi-
tation, the interface was still preferred by five participants.

The hand gesture interface was only preferred by one 
participant probably because the definition of Yes/No using 
a waving OK gesture and a waving extended hand was not 
natural or unfamiliar to participants. To make a response, 
the hand of a participant needed to make a two-step move-
ment. First, they need to make an OK gesture or extend their 

Fig. 8   Subjective measures

Fig. 9   Total score
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hands. Then, they need to wave their hands to confirm their 
responses. It is obvious that more efforts are required when 
using the hand gesture interface than other two interfaces, 
which required only a one-step movement, such as pressing 
a button or shaking their heads. As shown in Fig. 8, the hand 
gesture was the most difficult to learn and most difficult to 
use. The factors fun, responsiveness and subjective accu-
racy were also lower than other two interfaces. It was only 
considered better than the head gesture interface in terms of 
tiredness. We expect that improved gestures for Yes and No 
might improve the usability of the hand gesture interface.

Finally, another option to implement the functionality to 
answer Yes/No questions in VR systems is to use speech 
recognition algorithms as interfaces to recognize people’s 
voice. The performance and user preference of the speech 
recognition interface also can be studied and compared to 
the motion-based interfaces presented in this paper. In prac-
tice, we can also design a multi-modal interface that inte-
grates the head gesture interface, the hand gesture interface, 
the gamepad interface and the speech recognition interface 
into a single system and let users choose their preferred 
interface during actual usage.

Limitations of the experimental design were that extra 
time was taken for participants to recall the objects they 
memorized when responding to Yes/No questions and the 
ability of the participants to memorize the given objects 
might also affect the results of the real-time accuracy. In 
addition, we had a sample of twelve participants who were 
young university-educated students. They might not be the 
representative of the general population or specific subpopu-
lations such as children or the elderly. Future research should 
consider including more participants from diverse groups 
to determine whether the interface preferences found here 
generalize to these groups.

The research is important in the way that it provides VR 
researchers and designers with an idea of user preference 
and performance when users answering Yes/No questions 
or other binary questions using a head gesture interface, a 
hand gesture interface and a gamepad interface. Designers 
may consider several factors such as cost and the factors we 
studied in the paper when they do actual design and make 
decisions to include a specific interface or provide all three 
interfaces in their systems.

6 � Conclusions

In this paper, we proposed to use the head gesture interface 
and the hand gesture interface to answer Yes/No questions 
in virtual environments. We evaluated their performance and 
user preference through a memorization task and compared 
them to the traditional gamepad interface. We showed that 
the head gesture interface was comparable to the gamepad 

interface. As adding the head gesture interface to a VR sys-
tem usually does not require additional tracking devices, 
we suggest adding the head gesture interface to VR sys-
tems that require users to answer Yes/No questions. These 
techniques could also be readily adapted for other common 
binary responses (e.g., left versus right). We believe that 
interaction techniques using head gestures and hand gestures 
in VR systems are still underexplored. Thus, the utility of 
these interfaces in VR systems is worth further investigation.
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